

www.openmake.com

Building IBM WebSphere® Studio
Applications with

A White Paper and technical overview of build management techniques
using IBM WebSphere® Studio Application Developer integrated with
OpenMake Meister

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

This document provides an overview of the use of Meister from OpenMake Software integrated
with IBM Websphere. It is designed for software developers, configuration managers, and anyone
concerned with managing the reliability of software applications.

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

Table of Contents

Introduction ... 1

Challenges Building Java and J2EE Applications without Meister using WebSphere Studio
Advanced Developer .. 2

The Meister Solution .. 4

Meister Technical Overview... 7

Meister Projects ... 7
The Meister Knowledge Base ... 7
Target Definition Files .. 8

Using Meister with WebSphere Studio Development .. 9

WebSphere Studio Development Assumptions ... 9
Meister Installation Assumptions .. 9
Meister Knowledge Base Setup ... 9
Installing the Meister Plug-In ... 10
Activating Meister Plug-In Menus within WebSphere Studio 10
Accessing Meister Plug-In Views in WebSphere Studio ... 11
Walk-Through Examples ... 14
Performing an Meister Build Outside of WebSphere Studio 27
Integrating the Meister Build with SCM-Managed WebSphere Studio Development

 ... 28
Extending the Meister Build Process .. 28

Company Overview .. 31

North American Headquarters .. Error! Bookmark not defined.
Sales and Marketing ... Error! Bookmark not defined.

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 1

Introduction

This document presents a discussion of how OpenMake Meister integrates into WebSphere Studio
Application Developer (WSAD) and extends the build process.

In the first section, we discuss challenges faced in building Java and J2EE application outside of the
WSAD IDE. We provide a general background of the build process within the WSAD IDE and general
solutions for outside builds.

In the next two sections, we present an overview of OpenMake Meister where general terminology,
features, and process are detailed.

In the fourth section, the OpenMake Meister build process for Java and J2EE applications is
introduced. We discuss the setup and actual build steps used by OpenMake Meister.

The final section provides details on the Meister Plug-In for WebSphere Studio, the key integration
point between Meister and WSAD. Typical example applications provide case studies for
configuration and usage. We discuss how OpenMake Meister takes the build outside of the WSAD IDE
and how the build process can be extended to provide additional functionality.

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 2

Challenges Building Java and J2EE Applications without Meister
using WebSphere Studio Advanced Developer

WebSphere Studio Advanced Developer provides “point and click” build support in two steps, first,
the creation of .class files and second, the creation of deployable archive files (.jar, .ear, .war). Builds
are organized based on Workspaces allowing the entire Workspace to be built or allowing for the
build of a single project within the Workspace.

For the creation of .class files, the user selects "Build" from the IDE menu to call the built-in Java
Development Tooling (JDT) plug-in. The JDT simply compiles .java files into .class files. It will compile
.java files into .class files, incrementally in an efficient and effective manner. In order to create the
deployable archive files (.jar, .ear, .war), the developer points and clicks through the use of the built-
in Export functionality.

Because the JDT and the Export functionality are managed through the IDE, the developers are
shielded from the build steps. Information used to control the build such as project
interdependencies and classpath may be “closed” and not readily accessible outside of the IDE.

Development efforts are managed with WebSphere based on Workspaces. A Workspace is a directory
that contains objects associated with WebSphere projects. The Workspace also has associated
metadata. This metadata includes developer preferences and build information about how the objects
in the workspace get built and packaged. Each developer can define the metadata uniquely. This
uniqueness means that the metadata associated with the workspace is specific to each developer’s
workstation.

In a team setting, each developer has their own version of the workspace with the metadata being the
main difference between developers. Each developer’s workspace contains a full source code tree.
Developers coordinate the sharing of code by importing new versions of the code into their
workspace as they see necessary based on team verbal communications or using a version
management tool.

When builds occur, each developer builds their version of the workspace. Because each developer’s
workspace can contain different source code and different workspace metadata, developers cannot
confirm that a build of the workspace, regardless of developer, will produce the same results.

As the WebSphere application moves across the development lifecycle from development into
production, build challenges are encountered. The following challenges must be overcome to ensure a
repeatable, consistent WSAD build process at the developer workspace level and at a final production
build level:

• Each developer is responsible for maintaining the correct level of code in their workspace.
When a production build is required, inconsistencies between developer workspaces may
cause the build to break.

• Developers may branch the source code managed in their workspace without realizing that
there is a potential integration issue between shared code. These issues may not be realized
until the final production build, often too late in the lifecycle to provide a simple fix.

• A single build expert must be used to manage the build and coordinate the team’s changes.

• To do the production build, the build requires a machine with the WebSphere Studio
Application Developer IDE installed.

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 3

• The build expert must determine the correct version of the source code and manually confirm
the correct settings of the workspace metadata to produce a stable version of the deployable
objects.

• All builds are dependent upon the WebSphere IDE in a point and click method. The point and
click method require multiple build steps.

• The workspace metadata including the buildpath information, the build machine and the
build expert is critical in reproducing a single build.

• The ability to build parallel development efforts or support builds across a lifecycle
(production, testing or emergency) becomes limited due to the dependency on a specific
machine with a specific workspace configuration as well as the dependency on a particular
build expert to perform a manual point and click process.

To avoid the point and click interface to the build process, the IBM recommended alternative is to
develop an “outside” build using WebSphere in “headless” mode. Following is an excerpt from the
WSDD Redbooks:

“… it would be best if the outside build could simply ask an Application Developer
project to build itself using the existing project buildpath information. Such a build
does not require the GUI to be running. You can have Application Developer launch
itself "headless" and run a specified task, typically an Ant build. You need to create a
wrapper HeadlessAntRunner that extends AntRunner and attaches a
HeadlessAntListener as part of its run method. …”

“Using Ant with WebSphere Studio Application Developer -- Part 1 of 3” WSDD Library
Support Downloads Redbooks Newsgroups All of IBM; Barry Searle

Performing builds in headless mode only replaces the requirement have having a developer point and
click through the process. All other challenges remain the same, i.e., team coordination of the
WebSphere metadata, management of a specific build machine and heavy dependency on a particular
build expert. This solution also adds the new challenge of maintaining build specific Java classes in
order for the WSAD IDE to integrate with Ant and the creation of a build.xml Ant/XML script.
Integration between ANT and WSAD is not simple. In addition, the supported Ant version (1.3 in
WSAD 4.x, 1.4 in 5.0) may not support features that developers may require. Installing and using an
updated version with WSAD will result in an unsupported installation.

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 4

The Meister Solution

Meister addresses the challenges that developers face when building their WebSphere Studio
Application Developer workspaces in a team setting from development to production.
Meister is a declarative software build automation tool designed to standardize application
builds across the DevOps Pipleine. It is a unique tool in that it provides a standardized
method to rebuild any executable module based on a platform type without being tied to a
particular build location. Following is an explanation of how Meister resolves the critical
challenges facing WSAD developers when building their applications.

Challenge:

Each developer is responsible for maintaining the correct level of code in their workspace. When a
production build is required, inconsistencies between developer workspaces may cause the build to
break.

 Meister Solution:

OpenMake resolves this problem because it does not rely upon the workspace metadata.
Instead, Meister manages Target Definition files (TGTs) that report the dependency
information needed for the build. These TGTs can be shared, centralized and automatically
updated depending on the development team requirements.

Challenge:

Developers may branch the source code managed in their workspace without realizing that there is a
potential integration issue between shared code. These issues may not be realized until the final
production build, often too late in the lifecycle to provide a simple fix.

Meister Solution:

Meister uses a Dependency Directory to allow developers to perform Unit builds against an
approved build. This allows developers to build the code in their workspace against the last
“approved” build. Because builds can be scheduled nightly, this more closely supports
extreme programming where the continuous integration of source code is pursued.

Challenge:

A single build expert must be used to manage the build and coordinate the team’s changes.

Meister Solution:

The build knowledge base replaces the build expert. All build information is stored and
managed by the Meister Knowledge Base and in the Meister Target Definition files (TGTs).

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 5

Challenge:

In order to do the production build, the build requires a machine with the WebSphere Studio Application
Developer IDE installed.

Meister Solution:

Meister does not require the WSAD IDE installed. It does not use the
WSAD IDE in “headless” mode. Meister comes with extensible PERL scripts that generate,
dynamic, Ant/XML files. The generated Ant/XML files then call the appropriate Java tasks.

Challenge:

The build expert must determine the correct version of the source code and manually confirm the correct
settings of the workspace metadata to produce a stable version of the deployable objects.

Meister Solution:

Meister integrates with version management tools to determine the correct version of source
code to be included in the build. In addition, the workspace metadata is replaced by the
Meister TGT files and Knowledge Base.

Challenge:

All builds are dependent upon the WebSphere IDE in a point and click method. The point and click
method require multiple build steps.

Meister Solution:

Meister’s command line features allow you to automate the execution of the WSAD build. No
additional Java coding or Ant scripting is required.

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 6

Challenge:

The workspace metadata including the buildpath information, the build machine and the build expert is
critical in reproducing a single build.

Meister Solution:

Meister does not rely on workspace metadata as all target information is derived from the
workspace and saved in a Target Definition file (TGT). The combination of the TGT and the
Knowledge Base allows for a repeatable build process across any workstation and executed
by any person.

Challenge:

The ability to build parallel development efforts or support builds across a lifecycle (production, testing
or emergency) becomes limited due to the dependency on a specific machine with a specific workspace
configuration as well as the dependency on a particular build expert to perform a manual point and
click process.

Meister Solution:
Meister can dynamically generate a build for any level of the application based on an Meister
Project and Dependency Directory. A developer can build any level of any WSAD Project from
the command line or from the Eclipse plug-in.

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 7

Meister Technical Overview

Meister is a build process automation tool designed to standardize Client/Server and Internet
application builds from development through production. It is a unique tool in that it provides a
standardized method to rebuild any executable module based on platform type without the
dependency of a particular development machine. This is critical for development teams during day-
to-day compilations, as well as the change and configuration management teams during the
production turnover process. Since Meister automates the entire build process and tracks
dependencies between application components, the production turnover process can easily
incorporate the rebuilding of all source modules turned over by the development teams.
Development teams can easily implement nightly production builds without the need for a designated
employee (the build master) who is dedicated to managing the application system make file.

Meister Projects

A Meister project defines a set of build targets and the directory locations in which all source files for
all the project’s build targets can be found. Meister projects typically correspond in a one-to-one
relationship with the WebSphere Studio Workspace.

The Meister Knowledge Base

Meister separates common build information from critical project specific information. Common
build information is managed in the Meister Knowledge Base, while application specific information,
that likely to change over time, is managed in Target Definition Files (e.g. target-dependency
relationships).

The Meister Knowledgebase contains information on:

• Build Types and Rules
Build target types and all of the rules and compile flags necessary to create a target from the
dependencies for that type.

• Project Dependency Directories
Source directories allowed for a particular configuration of an application including all source
code, libraries and Meister target definition files.

• Build Machines
Information on remote build machines that may be used to build different components of a
project.

• Groups and Users
Information on the users and their corresponding groups used to organize the availability and
presentation of the Knowledge Base

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 8

Target Definition Files

Target Definition Files, identified by a .tgt file extension, are defined by developers and indicate build
targets and high-level dependency information for those targets. These Target Definition Files are
source code for the build. The creation of target definition files using the Meister Web Client
represents the minimum required effort for developers.

Unlike other build methodologies, a target definition file does not require scripting of any kind by
developers. It is simply a target name, Build Type and high-level dependency list.

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 9

Using Meister with WebSphere Studio Development

Meister provides full support of the use of Ant tasks when building Java based applications.
When using Meister with IBM WebSphere Studio Application Developer, Ant tasks are
derived based on the WSAD project file. Developers work within the WSAD IDE with Meister
monitoring the changes being made to the project dependency through the Meister Eclipse
plug-in. By monitoring the developer’s work activities, Meister can maintain accurate Target
Definition files (TGT). These TGT files are then used outside of the WSAD IDE to perform
project builds at any release level or state of a development lifecycle.

This section provides an overview of how to set up and execute builds using Meister both within and
outside the WSAD IDE. The key integration point is the Meister Plug-In that

• directly gathers information on the contents of the WSAD Projects.
• helps the developer set up a build using Meister.

Two examples are provided:

1. A standalone Java project: MetalWorks
Details the basics on setup and use of the Meister Plug-In

2. A J2EE application: MiniBank

A typical Enterprise Application consisting of:
• MiniBank: EAR Project
• MiniBankEJB: EJB Project
• MiniBankWeb: Web Application Project

The Meister Plug-In is the same in both WepSphere Studio Application Developer 4.x and 5.0.
MetalWorks is presented in 4.x and MiniBank in 5.0.

WebSphere Studio Development Assumptions
The developer should already be familiar with WSAD development processes. The WSAD Projects for
the MetalWorks and MiniBank examples have already been imported into the developer’s WSAD
Workspace and can be built successfully within the IDE.

Meister Installation Assumptions
The Meister Knowledge Base Server is installed and running properly on a centralized server that the
developer’s workstation have network access to. The Meister Command Line Client is installed on the
developer’s local workstation.

Meister Knowledge Base Setup
In order to build a WSAD Project using Meister, it must be associated with an Meister Project.
Typically, a Workspace consisting of multiple related WSAD Projects, will be associated to a single
Meister Project. The Meister Project is configured using the Meister Web Client. Go to the Manage
Projects menu option from the main menu on the Meister Web Client.

Meister Dependency Directory must be defined for each Meister Project. Suggested Dependency
Directory configurations include:

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 10

• In WSAD or in the WSAD Workspace Root directory:
.
./tgt
[WebSphere Studio Library Directory]
[Third-Party Library Directory]
[Java Home]/lib
[Java Home]/jre/lib

• Outside WSAD, referencing the WSAD Workspace Root directory:

.
[WebSphere Studio Workspace Root]
[WebSphere Studio Workspace Root]/tgt
[WebSphere Studio Library Directory]
[Third-Party Library Directory]
[Java Home]/lib
[Java Home]/jre/lib

• Outside of WSAD, referencing an SCM-managed directory

.

./tgt
[SCM-Managed Directory]
[SCM-Managed Directory]/tgt
[WebSphere Studio Library Directory (SCM-Managed)]
[Third-Party Library Directory (SCM-Managed)]
[Java Home]/lib
[Java Home]/jre/lib

Installing the Meister Plug-In
The Meister Plug-In for WebSphere Studio Application Developer can be found in the WSAD directory
on the Meister installation CD. Execute install.exe to initiate the install process.

The installer will automatically detect which version of WSAD is installed (4.x or 5.0) and the
installation directory. These settings can be updated during the installation process, particularly if
more than one version of WSAD is installed.

After installation is complete, a new subdirectory will be created in the WSAD plugins directory:

• 4.x: [WSAD]\plugins\com.openmake.eclipse_1.0.x
• 5.0: [WSAD]\eclipse\plugins\com.openmake.eclipse_1.0.x

where x is the current revision number of the Meister Plug-in.

To verify that the Meister Plug-In is recognized, start up WebSphere Studio Application Developer
and go to Help->About…. The Plug-In Details button will list all installed plug-ins. The Meister Plug-In
will have an entry:

Catalyst Systems Corporation Meister Plug-In 1.0.x

Activating Meister Plug-In Menus within WebSphere Studio
While context-sensitive popup menu options will be immediately available, Meister-specific menu-
bar items will need to be activated through Perspective Customization:

1. Go to

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 11

a. 4.x: Perspective->Customize
b. 5.0: Window->Customize Perspective…

2. In the Customize Perspective dialog, expand Other
3. Check the box next to “Meister Action Set”:

4. Click OK

A Meister menu will be now be visible:

This process should be repeated in all Perspectives where the Meister Plug-In will be used. Typically,
this will be in Java and J2EE.

Accessing Meister Plug-In Views in WebSphere Studio
To open the Meister Plug-In Build Setup and Console Views:

1. Go to
a. 4.x: Perspective->Show View->Other

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 12

b. 5.0: Window->Show View->Other

2. Expand the Meister section

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 13

and choose either
a. Meister Build Setup

b. Meister Console

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 14

3. Click OK

Typically, only the Meister Build Setup View needs to be opened in this manner. The Meister Console
will be opened automatically when a Meister build is being performed through the WebSphere Studio
IDE.

Walk-Through Examples

Example 1 – MetalWorks – a Standard Java Project

MetalWorks is an example application that comes with Meister. The Dev Dependency Directory is
already configured for building within WSAD:

.

./tgt
$(REF_DIR)/MetalWorks/development
$(JAVA_HOME)/lib
$(JAVA_HOME)/jre/lib

This Dependency Directory is a combination of the typical within WSAD and SCM-managed
Dependency Directories. MetalWorks is a relatively simple straightforward Java application and only
depends on rt.jar. WSAD J2EE libraries are not required.

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 15

The MetalWorks Java application has been loaded as follows:

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 16

To configure the Meister Build:
1. Open Project Properties for MetalWorks:

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 17

2. Go to the Meister: Workspace Properties page and select the METALWORKS Meister Project

and DEV Meister Dependency Directory

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 18

3. Go to the Meister: Project Properties page and enter in the following:

• Target Name: metalworks.jar
• Target File Name: metalworks.jar.tgt
• Build Type: Java Jar
• Intermediate Directory: MetalWorks/bin
• Always Use Meister To Build Note: This option will not be available at this point

After clicking OK, the Meister Plug-In will create a new WSAD Project “tgt” and create the .tgt file

associated with the WSAD Project MetalWorks:

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 19

4. Open the Plug-in Build Setup Viewer and create a Custom Build with the following selections:

• Target to build: metalworks.jar
• bldmake flags: Verbose Output
• om flags: Verbose Output
• Save Custom Build as Build Job:
• Enter “Metalworks WSAD Build” as Build Job Name
• Set as Default Build for MetalWorks

Click Execute to perform build and save the Build Job.

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 20

The Console should be open and displaying the output log for the build:

A successful build will create the target metalworks.jar in the Workspace Root directory.

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 21

Example 2 - MiniBank

MiniBank is an example J2EE application that has provided with WSAD 5.0. To load the example into
the WSAD Workspace:

1. Go to File->New->Other…
2. Select Examples->Enterprise Application 1.2 and choose MiniBank

Clicking Next> will allow you to select the EAR Project name

3. Change the Project name to MiniBank and click Finish.

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 22

The MiniBank Enterprise Application Project along with MinibankEJB and MinibankWEB will be
automatically be created in the Workspace.

A Meister Project MiniBank should be created along with a Dev Dependency Directory as follows:

.

./tgt
[WSAD 5.0 Install Directory]/runtimes/aes_v4_jars/lib
[WSAD 5.0 Install Directory]/runtimes/base_v5/lib
[Java Home]/lib
[Java Home]/jre/lib

The process for configuring the Meister build is similar to MetalWorks example. However, WSAD
Project dependencies exist that should be verified. Meister requires these settings in order to
generate the associated .tgt’s properly.

1. Verify WSAD Project dependencies
a. MinibankWeb

Java Build Path should specify a dependency on MinibankEJB

b. MiniBank
Project References should specify dependencies on both MinibankEJB and
MinibankWeb

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 23

2. Set Meister Properties
a. MinibankEJB:

• Target Name: MinibankEJB.jar
• Target File Name: MinibankEJB.jar.tgt
• Build Type: Java Jar
• Intermediate Directory: build/MinibankEJB

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 24

b. MinibankWeb:
• Target Name: MinibankWeb.war
• Target File Name: MinibankWeb.war.tgt
• Build Type: Java War
• Intermediate Directory: build/MinibankWeb

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 25

c. MiniBank:
• Target Name: MiniBank.ear
• Target File Name: MiniBank.ear.tgt
• Build Type: Java Ear
• Intermediate Directory: build/MiniBank

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 26

After the WSAD Projects have been configured, the Workspace will look like:

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 27

3. Configure and execute the Meister Build from the Build Setup View
• Targets to build: MinibankEJB.jar, MinbankWeb.war, MiniBank.ear
• bldmake flags: Verbose Output
• om flags: Verbose Output
• Save Custom Build as Build Job:

Enter “MiniBank WSAD Build” as Build Job Name
• Set as Default Build for All Projects

A successful build will create the targets MinibankEJB.jar, MinbankWeb.war, and MiniBank.ear in the
Workspace Root directory. MiniBank.ear will be deployable on a WebSphere Application Server.

Performing a Meister Build Outside of WebSphere Studio
The process Meister uses to perform builds outside of the WebSphere Studio IDE is identical to that
used by the Plug-In. The only requirements are

• Meister .tgt files generated by the Meister Plug-In
• Source files either in the Workspace Root directory or in a sandbox/reference equivalent
• WebSphere J2EE libraries
• Java libraries

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 28

No additional interfaces to WSAD are required. Builds may also be performed on either the
developers’ workstations or a dedicated build server.

A typical build procedure is as follows:

1. Set up environment
Set JAVA_HOME, PATH, etc. as necessary to ensure a consistent build environment

2. Run bldmake to create Meister build file
bldmake [Meister Project] [Project Dependency Directory] –s

-s instructs bldmake to be case-sensitive

3. Run om to execute build
om –j -ov

-j turns off Java source code scanning by Meister. All necessary dependencies are assumed to
have been already specified
-ov turns on verbose output

Integrating the Meister Build with SCM-Managed WebSphere Studio
Development
The .tgt files generated by the Meister Plug-In can versioned within the WSAD IDE in the same
manner as other Workspace files. This allows a complete versioning of both the source code and the
build process.

Automated builds can be set up for

• Nightly
• Snapshot
• Application Lifecycle (QA, Release, etc.)

Extending the Meister Build Process
Meister functionality can be readily extended through

• Additional Build Types and Rules
• New or updated Meister Build Scripts via the SDK

One particular scenario where extended Meister functionality has been used is the configuration of an
Enterprise Application .ear for deployments to additional Application Servers. Typical development
may tie the files in the WSAD Workspace to a particular network location.

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 29

Updates are typically required in

• Deployment descriptor files ejb-jar.xml and/or web.xml
• Application-specific configuration files

to point to location-specific databases, servers, or directories.

Two solutions have been implemented:

1. Generation and update of configuration files in an existing .ear
Meister Build Types and associated Build Scripts have been created using the SDK to

• Generate location-specific deployment descriptor and configuration files:

Source files:

• Original deployment descriptor and configuration files

• Location configuration data file

Output files:

• Location-updated deployment descriptor and configuration files

• Update .jar, .war, .ear with deployment descriptor and configuration files:

Source files:

• Original .jar, .war, and .ear

• Location-updated deployment descriptor and configuration files

Output files:

• Location-updated .ear

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 30

2. Dependency Directory selection of configuration files
Multiple versions of the deployment descriptor and other configuration files are maintained
in separate directories. Standard Meister Build Types and Rules can be used.

For MyApp.ear
ejb-jar.xml versions:

/source/config/dev/MyEJB/META-INF/ejb-jar.xml
/source/config/qa/MyEJB/META-INF/ejb-jar.xml
/source/config/release/MyEJB/META-INF/ejb-jar.xml

For the Meister Project MyApp

Dev SearchPath

…
/source/config/dev
/source
…

Build will use /source/config/dev/MyEJB/META-INF/ejb-jar.xml

QA SearchPath
…
/source/config/qa
/source
…

Build will use /source/config/qa/MyEJB/META-INF/ejb-jar.xml

Release SearchPath

…
/source/config/release
/source
…

Build will use /source/config/release/MyEJB/META-INF/ejb-jar.xml

Final build target is a location-specific .ear.

Building With Meister and WebSphere © 2021 Catalyst Systems Corporation Page 31

Company Overview

OpenMake Software started the evolution of builds in 1995, serving mainly the financial
community with the mission of delivering a 100% insulated build process that were also fast.
The OpenMake Software team understood the ins and outs of software compiles and links,
and how easily a build could be the bottleneck of the software delivery process and be easily
compromised on accident or on purpose. With this mission in mind, OpenMake Meister was
created and has been serving large enterprises for over 25 years, the longest serving solution
in the DevOps ecosystem. Meister has been sold and distributed by Broadcom for over 20
years.

