
 1

Copyright © 2021 Catalyst Systems Corporation. OpenMake Software, Meister and the logos are registered trademarks of

Catalyst Systems Corporation. All other product names may be trademarks of their respective companies.

Best Practices Overview for Auditing and

Securing Your Build Environment with

A White Paper and Best Practice overview of

how to secure and trace builds using OpenMake Meister

Request-info@openmakesoftware.com

 www.openmakesoftware.com

 2

Copyright © 2021 Catalyst Systems Corporation. OpenMake Software, Meister and the logos are registered trademarks of

Catalyst Systems Corporation. All other product names may be trademarks of their respective companies.

INTRODUCTION ... 4

COMMON BUILD CHALLENGES ... 5

THE OPENMAKE MEISTER SOLUTION ... 6

FOOTPRINTING AND BUILD AUDIT REPORTING .. 7

EXAMPLE BUILD AUDIT REPORT... 9

DEPENDENCY DIRECTORIES .. 11

BUILD TYPES .. 11

PUBLIC BUILD JOBS ... 12

MANAGING GROUPS AND USERS ... 12

CONCLUSION .. 13

COMPANY OVERVIEW.. 13

 3

Copyright © 2021 Catalyst Systems Corporation. OpenMake Software, Meister and the logos are registered trademarks of

Catalyst Systems Corporation. All other product names may be trademarks of their respective companies.

 4

Copyright © 2021 Catalyst Systems Corporation. OpenMake Software, Meister and the logos are registered trademarks of

Catalyst Systems Corporation. All other product names may be trademarks of their respective companies.

Introduction

OpenMake Software, the leader in enterprise build management

technology, is designed to directly benefit corporations by improving the ability to

audit and trace build results by eliminating the need for imperative build scripting.

OpenMake Meister supports a collaborative engineering process that allows

developers to contribute to the build while ensuring standardization and

consistency across all platforms, compilers and IDEs. This standardization

creates an environment for builds to be repeatable and secure from all states in

the life cycle including development, testing, production and emergency updates.

OpenMake Meister addresses the primary problem with the uncontrolled,

enterprise build process – the imperative coding of make, maven, Gradle, and

Ant build scripts. Manual scripts cannot provide the consistency and traceability

that is required to fully audit the movement of a source code change from

development to production. Manually coded solutions do not provide the ability to

perform the necessary detailed dependency analysis and footprinting capabilities

needed to confirm matching source to executables. In addition, manually coded

scripts can be executed without any level of security checking. Even if a

“scheduling” type tool is used to control the manual scripts, it does not prevent

the scripts from being executed outside the control of the “scheduling” tool.

To make matters even more difficult for the enterprise relying on manual

scripting, the detailed configuration components of a build, including the use of

source code directories and compile flags, cannot be easily managed with the

use of manually coded scripts. It is not unusual for large development

organizations to have thousands of manually coded build scripts. Each of these

scripts can be written using various syntax and logic flow. To control the content

of the scripts, a large team of build script experts would need to be employed to

validate the correctness of the scripts before each build was executed.

 5

Copyright © 2021 Catalyst Systems Corporation. OpenMake Software, Meister and the logos are registered trademarks of

Catalyst Systems Corporation. All other product names may be trademarks of their respective companies.

This whitepaper summarizes the OpenMake Meister features that are

designed for build auditing and traceability. It covers best practices for setting up

“Groups” and “Users” for managing access privileges on the OpenMake Meister

build configuration components and on build execution.

Common Build Challenges

There are common factors that contribute to the reliability of any scripted

build process. The first and foremost challenge is knowing which version of the

source code, compiler libraries and third-party components are to be used in the

build, not only for system level builds, but also for daily development compiles.

The environment variables INCLUDE, LIB, VPATH and CLASSPATH are critical

as they determine what versions of the files are to be included at build time.

These environment variable settings are specific to each machine. Because of

the individual settings of these environment variables, the build is dependent

upon the build machine. It may be close to impossible for two machines to

reproduce the same build results, since developers compile applications on their

own workstation, and no two developers’ machines are likely to be configured in

the same way.

When building applications using scripted build processes, the

standardization of these environmental factors is almost impossible. Without the

assurance of a non-scripted based build process, there is greater potential to

introduce errors that may not even be noticed until the application is running in

production or installed by the end user.

 6

Copyright © 2021 Catalyst Systems Corporation. OpenMake Software, Meister and the logos are registered trademarks of

Catalyst Systems Corporation. All other product names may be trademarks of their respective companies.

The OpenMake Meister Solution

OpenMake Meister provides a standardized method for creating and

managing build control files that replace imperative manual scripting. Build

Control files can be generated to build a single object, supporting developer daily

compile activities, or generated for a complete application, containing hundreds

of inter-dependent modules. Builds can be managed from an empty build

directory pulling source code from a pre-defined Dependency Path, or by

retrieving source code from a Version or Artifact Repositories. OpenMake

Meister controls the environment variable settings such as LIB, INCLUDE and

CLASSPATH so that regardless of the build machine, the build results are the

same.

OpenMake Meister fully supports Ant Tasks for completing Java builds.

Meister extends the use of Ant without the need for manually coding Ant based

imperative scripts. In the place of hard-coded scripts, Meister includes a library of

reusable PERL modules and a central Build Knowledge Base that serves as a

build Operator. To call the Operator, each team declares their application specific

information that is then passed to the central Operator to execute the build

process. Declarations are done through Target Definition files, used in

conjunction with the Meister internal Knowledge Base that references the

templated PERL modules to generate the Build Control file specific to the

application. Build Control files are completely portable regardless of application

development tool or operating system.

 7

Copyright © 2021 Catalyst Systems Corporation. OpenMake Software, Meister and the logos are registered trademarks of

Catalyst Systems Corporation. All other product names may be trademarks of their respective companies.

In addition to replacing the manual method of imperative build scripting,

Meister provides strict control and auditability through the following features:

• Foot printing and Build Audit Reporting – providing specific details

regarding the content of a build.

• Dependency Paths (VPATH) for all languages.

• Build Types.

• Public Build Jobs - allowing for pre and post build commands.

• User Groups and Privileges – allowing for the creation of build roles and

responsibilities.

• Support for over 200 different compilers and development tools.

Details of the Meister features are described below.

Footprinting and Build Audit Reporting

Footprinting, or the use of a Build Audit Report, is critical in the ability to

trace build results. Without a Footprint or a Build Audit Report, there is no way to

guarantee matching source to executables, or even know what source was used

to create and executable.

 8

Copyright © 2021 Catalyst Systems Corporation. OpenMake Software, Meister and the logos are registered trademarks of

Catalyst Systems Corporation. All other product names may be trademarks of their respective companies.

A Build Audit Report is a listing of the source code and intermediate binary

objects that went into the build of a Target presented in a report format. It is the

information "left behind" after a build has completed. A Footprint is the process of

embedding this information into the binary itself. If the information is embedded

into the built object, it is retrieved using the “omident” program. The Build Audit

Report can be used as an alternative, if changing the size of the built object is a

concern. Footprinting and/or Build Audit reporting are key ingredients for

matching source to executables. The Build Audit Report and Footprint capture

the following information:

• Source code information including the directory the file was found in and

the files size, date and timestamp. If a versioning tool is in place, Meister

can retrieve and report on the source version information allowing the

user to trace the actual version of the source back to the versioning tool.

Meister performs this activity through the real-time dependency

scanning. As the build executes and dependencies are located, Meister

saves the information for reporting purposes.

• A list of the machine specific environment variables set during the build

which includes:

o User Name

o Machine ID

o Compiler Path Settings

o Meister Project and Dependency Directory Settings

o Any environment variable “set” at the time of the build.

 9

Copyright © 2021 Catalyst Systems Corporation. OpenMake Software, Meister and the logos are registered trademarks of

Catalyst Systems Corporation. All other product names may be trademarks of their respective companies.

Example Build Audit Report

Below is an example Build Audit Report.

Bill of Materials Report for

 C:\ PROGRA~1\OpenMake\examples\TestBld\bin\hello.exe

Project Variables:

 Built on FRISBEE by USERNAME at 09/05/2002 13:41:42

Environment Variables:

 APPL=BUILD DEMO

 CLASSPATH=

 .;c:\VisualCafe\BIN\COMPONENTS\SYMBEANS.JAR;c:\VisualCafe\BIN\COMPONEN TS\

 COMPILER=C:\PROGRA~1\MICROS~2\VC98

 COMPUTERNAME=FRISBEE

 ComSpec=c:\winnt\system32\cmd.exe

 EBU_HOME=C:\ORANT\OBACKUP

 HOMEDRIVE=C:

 HOMEPATH=\

 LOGONSERVER=\\FRISBEE

 MAKEFILEDIR=

 MSDevDir=C:\ProgramFiles\MicrosoftVisualStudio\Common\MSDev98;

 C:\ProgramFiles\De

 NUMBER_OF_PROCESSORS=1

 OPENMAKE_HOME=C:\openmake\bin

 OS=Windows

 Os2LibPath=c:\winnt\system32\os2\dll;

 PATHEXT=.COM;.EXE;.BAT;.CMD

 PROCESSOR_ARCHITECTURE=x86

 PROCESSOR_IDENTIFIER=x86 Family 5 Model 8 Stepping 1, GenuineIntel

 PROCESSOR_LEVEL=5

 PROCESSOR_REVISION=0801

 PROJECTVPATH=

 .;$(REFDIR)/build demo/development;$(REFDIR)/build demo/ test;$(REFDIR)/

 PROMPT=PG

 PWD=C:\PROGRA~1\OpenMake\examples\TestBld

 Path=

 c:\Perl\bin;c:\winnt\system32;c:\winnt;C:\ORANT\BIN;C:\ORANT\OBACKUP\B IN;C:\PRO

 REFDIR=C:\PROGRA~1\OpenMake\examples\REF

 10

Copyright © 2021 Catalyst Systems Corporation. OpenMake Software, Meister and the logos are registered trademarks of

Catalyst Systems Corporation. All other product names may be trademarks of their respective companies.

REF_DIR=p:

 STAGE=DEVELOPMENT

 SystemDrive=C:

 SystemRoot=c:\winnt

 USERDOMAIN=FRISBEE

 USERNAME=Administrator

 SERPROFILE=c:\winnt\Profiles\Administrator

 VPATH=

 .;$(REFDIR)/build demo/development;$(REFDIR)/build demo/ test;$(REFDIR)/build

 XVT_DSP_DIR=c:\openmake\xvtdsp45\w32_x86

 include=

 C:\Program Files\Microsoft Visual Studio\VC98\atl\include;C:\Program Files\

 lib=C:\ProgramFiles\MicrosoftVisualStudio\VC98\mfc\lib;C:\ProgramFiles \Microsoft

 windir=c:\winnt

Source Code Dependencies:

Date Time Size Target Dependencies

09/05/1999 13:41:26 1968 bin\hello.res

08/31/1999 21:48:43 4450 C:\REF\build demo\release\hello\hello.rc

08/31/1999 21:48:43 529 C:\REF\build demo\release\hello\resource.h

08/31/1999 21:48:42 1078 C:\REF\build demo\release\hello\HELLO.ICO

09/05/1999 13:41:38 17794 bin\hello.obj

09/03/1999 16:28:57 3495 C:\REF\build demo\development\hello\hello.cpp

08/31/1999 21:48:43 469 C:\REF\build demo\release\hello\stdafx.h

08/31/1999 21:48:42 1495 C:\REF\build demo\release\hello\hello.h

09/05/1999 13:41:36 3359940 bin\hello.pch

08/31/1999 21:48:43 501 C:\REF\build demo\release\hello\stdafx.cpp

09/05/1999 13:41:40 1734 bin\hello.lib

09/05/1999 13:41:36 584 bin\stdafx.obj

08/31/1999 21:48:42 12 C:\REF\build demo\release\hello\hello.def

09/05/1999 13:41:40 538 bin\hello.exp

END: Bill of Materials Report for C:\PROGRA~1\OpenMake\examples\TestBld\bin\hello.exe.

 11

Copyright © 2021 Catalyst Systems Corporation. OpenMake Software, Meister and the logos are registered trademarks of

Catalyst Systems Corporation. All other product names may be trademarks of their respective companies.

Dependency Directories

Dependency Directories are the way in which the location of source code

is controlled by Meister. Dependency Directories are passed to the compilers by

Meister during the build. Dependency Directories contains a list of approved

directories that can be used in the build. If the file is not found in the declared

Dependency Directories, Meister displays an Error Message indicating that the

source was not found.

Dependency Directories are important because they carefully control how

source code gets into the build. Access to defining Dependency Directories can

be controlled based on Group privileges. This means that only certain individuals

can define the high-level directories that will be used during a build.

Build Types

 Build Types are unique to Meister. Build Types control the entire build

configuration components including compile flags, link flags and build

parameters. For managing enterprise builds, Build Types are critical for build

traceability since all configuration data used in the build is administered in a

single location and documented. Unlike in the case with manual scripts, the build

configuration components are controlled using Meister. Access to Build Types

can be controlled based on Group privileges. This means that only certain

individuals can define build configuration data that will be used during the build.

 12

Copyright © 2021 Catalyst Systems Corporation. OpenMake Software, Meister and the logos are registered trademarks of

Catalyst Systems Corporation. All other product names may be trademarks of their respective companies.

Public Build Jobs

 Build Jobs are executed to perform a build on a particular endpoint,

executing pre and post build commands. Build Jobs can be local to a developer,

called a “Private” Build Job, or shared for all approved Users called a “Public”

Build Job. Private Build Jobs can be promoted by a developer to a Public Build

Job. When this occurs, the Public Build Job can be repeated anyone with access.

 Public Build Jobs are important for Audit control over the build process

because they provide the repeatability necessary for builds to move between a

“Development” stage to a “Pre-Production Control” stage. More importantly,

access to Public Build Jobs can be assigned to Groups. This means that only

certain individuals can see and execute the Public Build Job. For environments

where the use of Secure Remote Build servers are in place, the use of Public

Build Jobs can streamline the Build process and control whom has access to

perform the Builds.

Managing Groups and Users

Managing Users is a simple task performed by the Meister Administrator.

Groups are defined by the Administrator to have access to Dependency

Directories, Build Types and Public Build Jobs. Much of the work of managing

Users is automatically handled based on default “User” and “Administrator”

Groups. The access privileges defined to these default Groups can be modified,

or custom Groups can be created.

 13

Copyright © 2021 Catalyst Systems Corporation. OpenMake Software, Meister and the logos are registered trademarks of

Catalyst Systems Corporation. All other product names may be trademarks of their respective companies.

Conclusion

Securing the software build process requires a disruption in the way we manage

the software compile and link step of our CI/CD pipeline. Old ways of writing

imperative build and package scripts are prone to errors and easy to hack. A

better method is to adopt a declarative build process that can be secured and

managed through a central control point. Securing the build process involves

tightly controlling your software supply chain including both external and internal

artifacts. The build step needs to include clear audit trails of all objects consumed

during the process, down to the compiler. Meister allows you to achieve this level

of control improving the consistency of builds and providing the guard rails need

for securing builds in today’s CI/CD pipeline automation.

Company Overview

OpenMake Software started the evolution of builds in 1995, serving mainly the

financial community with the mission of delivering a 100% insulated build process

that were also fast. The OpenMake Software team understood the ins and outs

of software compiles and links, and how easily a build could be the bottleneck of

the software delivery process and be easily compromised on accident or on

purpose. With this mission in mind, OpenMake Meister was created and has

been serving large enterprises for over 25 years, the longest serving solution in

the DevOps ecosystem. Meister has been sold and distributed by Broadcom for

over 20 years.

 14

Copyright © 2021 Catalyst Systems Corporation. OpenMake Software, Meister and the logos are registered trademarks of

Catalyst Systems Corporation. All other product names may be trademarks of their respective companies.

For more information reach out to us at request-info@openmakesoftware.com.

