

www.openmakesoftware.com

Building Eclipse Java Applications with

A White Paper and technical overview of build management techniques using the
Eclipse Java IDE integrated with Meister

2

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

Introduction ... 3

Overview ... 3

Challenges Building Java Applications without Meister using Eclipse 3

The Meister Solution ... 6

Meister Technical Overview .. 8

Meister Projects ... 8

The Meister Knowledge Base .. 9

Build Types, Tasks and Rules .. 9

Project Dependency Directories ... 9

Build Machines ... 9

Groups and Users .. 9

Target Definition Files .. 9

Using Meister with Eclipse Development .. 10

Plugin Architecture ... 10

Eclipse IDE Assumptions ... 11

Meister Installation Assumptions ... 11

Meister Knowledge Base Setup ... 12

Installing the Meister Plugin for Websphere Developers ... 13

Using Meister Context Sensitive Menus .. 14

Project Properties ... 14

Creating an Meister Build Project .. 16

Executing Meister Tasks Against an Meister Build Project .. 21

Meister Plugin Preferences ... 23

Conclusion .. 25

Additional Information .. Error! Bookmark not defined.

Company Overview ... Error! Bookmark not defined.

3

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

Introduction

This document presents a discussion of how Meister integrates into the Eclipse
Project’s Eclipse IDE for Java and extends the build process.

This document has two broad sections. The first set of sections discusses problems
with builds in Eclipse, the Meister solution, and the Meister Eclipse plugin. The second
set of sections details how developers use the Meister Eclipse plugin.

Managers, SCM Leads and Development Team Leads may be interested in the first
four sections. Developers and those familiar with the Meister concepts may want to
jump to the section “Using Meister with Eclipse Development”.

The Meister Eclipse plugin integrates with the development process through the Eclipse
IDE and is based on technology from the Eclipse Project (http://www.eclipse.org). The
discussion that follows below is in terms of Eclipse 2.x, but it is applicable to Eclipse 1.x.

Overview

In the first section, we discuss challenges faced in building Java applications outside of
the Eclipse IDE. We provide a general background of the build process within the
Eclipse IDE and general solutions for outside builds.

In the next two sections, we present an overview of Meister where general terminology,
features, and process are detailed.

In the fourth section, the Meister build process for Java applications is introduced. We
discuss the setup and actual build steps used by Meister.

The final section provides details on the Meister Plugin for Eclipse, the key integration
point between Meister and Eclipse. Typical example applications provide case studies
for configuration and usage. We discuss how Meister takes the build outside of the
Eclipse IDE and how the build process can be extended to provide additional
functionality.

Challenges Building Java Applications without Meister using Eclipse

The Eclipse IDE provides “point and click” build support in two steps, first, the creation
of .class files and second, the creation of deployable archive files (.jar, .war, and .ear).
Builds are organized based on Workspaces allowing the entire Workspace to be built or
allowing for the build of a single project within the Workspace.

For the creation of .class files, the user selects "Build" from the IDE menu to call the
built-in Java Development Tooling (JDT) plugin. The JDT simply compiles .java files into
.class files, incrementally and in an efficient manner. In order to create the deployable

http://www.eclipse.org/

4

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

archive files (typically a .jar file), the developer points and clicks through the use of the
built-in Export functionality.

Because the JDT and the Export functionality are managed through the IDE, the
developers are shielded from the build steps. Information used to control the build such
as project interdependencies and classpath may be “closed” and not readily accessible
outside of the IDE.

Development efforts are managed within Eclipse based on Workspaces. A Workspace
is a directory that contains objects associated with Eclipse projects. The Workspace
also has associated metadata. This metadata includes developer preferences, and build
information about how the objects in the workspace get built and packaged. Each
developer can define the metadata uniquely. This uniqueness means that the metadata
associated with the workspace is specific to each developers workstation.

In a team setting, each developer has their own version of the workspace, and each
developer’s metadata is the main difference between developers’ workspaces. Each
developer’s workspace contains a full source code tree. Developers coordinate the
sharing of code by importing new versions of the code into their workspace as they see
necessary based on team verbal communications or through the use of a version
management tool.

When builds occur, each developer builds their version of the workspace. Because each
developer’s workspace can contain different source code and different workspace
metadata, developers cannot confirm that a build of the workspace, regardless of
developer, will produce the same results.

Build challenges are encountered as the Eclipse Java application moves through the
development lifecycle from development into production. The following challenges must
be overcome in order to ensure a repeatable, consistent build process at the developer
workspace level and at a final production build level:

• Each developer is responsible for maintaining the correct level of code in their
workspace. When a production build is required, inconsistencies between
developer workspaces may cause the build to break.

• Developers may branch the source code managed in their workspace without
realizing that there is a potential integration issue between shared code. These
issues may not be realized until the final production build, often too late in the
lifecycle to provide a simple fix.

• A single build expert must be used to manage the build and coordinate the
team’s changes.

• In order to do the production build, the build requires a machine with the Eclipse
IDE installed.

5

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

• The build expert must determine the correct version of the source code and
manually confirm the correct settings of the workspace metadata to produce a
stable version of the deployable objects.

• All builds are dependent upon the Eclipse IDE in a point and click fashion. The
point and click method requires multiple build steps.

• The workspace metadata including the buildpath information, the build machine
and the build expert is critical in reproducing a single build.

• The ability to build parallel development efforts or support builds across a
lifecycle (production, testing or emergency) becomes limited due to the
dependency on a specific machine with a specific workspace configuration as
well as the dependency on a particular build expert to perform a manual point
and click process.

To avoid the point and click interface to the build process, most development teams will
resort to creating Ant Build scripts to compile their Java application. This process will
have one of two possible downsides:

1. Manual maintenance: Developers must maintain Ant build.xml scripts. These
scripts are then passed along to the Team Lead or “Build Master” to be
integrated into a full build. This leads to passing the build “back and forth”
between the Build Master and the Developers in order to get it right.

2. Developers write custom Java classes to interact with the Eclipse IDE in
“headless” mode. As suggested by IBM for Websphere Application Developer,
and applicable to Eclipse, an an “outside” build using Eclipse can be
accomplished by using the IDE in “headless” mode. Following is an excerpt from
the WSDD Redbooks:

… [I]t would be best if the outside build could simply ask an
Application Developer project to build itself using the existing project
buildpath information. Such a build does not require the GUI to be
running. You can have Application Developer launch itself “headless”
and run a specified task, typically an Ant build. You need to create a
wrapper HeadlessAntRunner that extends AntRunner and attaches a
HeadlessAntListener as part of its run method. …

“Using Ant with WebSphere Studio Application Developer -- Part 1 of
3” WSDD Library Support Downloads Redbooks Newsgroups All of
IBM; Barry Searle

Performing builds in headless mode only replaces the requirement of having a
developer point and click through the process. All other challenges remain the
same, i.e., team coordination of the Eclipse metadata, management of a specific
build machine and heavy dependency on a particular build expert. This solution
also adds the new challenge of maintaining build specific Java classes in order

6

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

for the Eclipse IDE to integrate with Ant and the creation of a build.xml Ant/XML
script. Integration between Ant and Eclipse is not simple.

The Meister Solution

Meister addresses the challenges that developers face when building their Eclipse
workspaces in a team setting from development to production. Meister is an enterprise
based build management product designed to standardize builds from development
through production. It is a unique tool in that it provides a standardized method to
rebuild any executable module based on a platform type without being tied to a
particular development machine. Following is an explanation of how Meister resolves
the critical challenges facing WSAD developers when building their applications.

Challenge:

Each developer is responsible for maintaining the correct level of code in their
workspace. When a production build is required, inconsistencies between developer
workspaces may cause the build to break.

Meister Solution:

Meister resolves this problem because it does not rely upon the workspace
metadata. Instead, Meister manages Target Definition files (TGTs) that report the
dependency information needed for the build. These TGTs can be shared,
centralized and automatically updated depending on the development team
requirements.

Challenge:

Developers may branch the source code managed in their workspace without realizing
that there is a potential integration issue between shared code. These issues may not
be realized until the final production build, often too late in the lifecycle to provide a
simple fix.

Meister Solution:

Meister uses a Dependency Directory to allow developers to perform Unit builds
against an approved build. This allows developers to build the code in their
workspace against the last “approved” build. Because builds can be scheduled
nightly, this more closely supports extreme programming where the continuous
integration of source code is pursued.

Challenge:

A single build expert must be used to manage the build and coordinate the team’s
changes.

Meister Solution:

7

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

The build knowledge base replaces the build expert. All build information is
stored and managed by the Meister Knowledge Base and in the Meister Target
Definition files (TGTs).

Challenge:

In order to do the production build, the build requires a machine with the Eclipse IDE
installed.

Meister Solution:

Meister does not require the Eclipse IDE installed. It does not use the
Eclipse IDE in “headless” mode. Meister comes with extensible Perl scripts that
generate, dynamic, Ant/XML files. The generated Ant/XML files then call the
appropriate Java tasks.

Challenge:

The build expert must determine the correct version of the source code and manually
confirm the correct settings of the workspace metadata to produce a stable version of
the deployable objects.

Meister Solution:

Meister integrates with version management tools to determine the correct
version of source code to be included in the build. In addition, the workspace
metadata is replaced by the Meister TGT files and Knowledge Base.

Challenge:

All builds are dependent upon the Eclipse IDE in a point and click method. The point
and click method requires multiple build steps.

Meister Solution:

Meister’s command line features allows you to automate the execution of the
Eclipse Java build. No additional Java coding or Ant scripting is required.

Challenge:

The workspace metadata including the buildpath information, the build machine and the
build expert is critical in reproducing a single build.

Meister Solution:

Meister does not rely on workspace metadata as all target information is derived
from the workspace and saved in a Target Definition file (TGT). The combination
of the TGT and the Knowledge Base allows for a repeatable build process across
any workstation and executed by any person.

Challenge:

8

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

The ability to build parallel development efforts or support builds across a lifecycle
(production, testing or emergency) becomes limited due to the dependency on a
specific machine with a specific workspace configuration as well as the dependency on
a particular build expert to perform a manual point and click process.

Meister Solution:

Meister can dynamically generate a build for any level of the application based
on an Meister Project and Dependency Directory. A developer can build any level
of any Eclipse Java Project from the command line or from the Meister
Eclipse/Eclipse/WSAD plugin.

Meister Technical Overview

Meister is an enterprise build management solution to standardize builds from
development through production. It is a unique tool in that it provides a standardized
method to rebuild any executable module based on platform type without the
dependency of a particular development machine. This is critical for development teams
during day-to-day compilations, as well as the change and configuration management
teams during the production turnover process.

Since Meister automates the entire build process and tracks dependencies between
application components, the production turnover process can easily incorporate the
rebuilding of all source modules turned over by the development teams. Development
teams can easily implement nightly production builds without the need for a designated
employee (the build master) who is dedicated to managing the application system Ant
build.xml file.

This ease of implementation is of direct benefit to the development teams. As we will
see below, the Meister Eclipse plugin transparently manages the build metadata within
the Eclipse IDE. This metadata can then be used external of the IDE to build the
application. This means that the development build follows the exact same process as
the build that will eventually be deployed in production, thus reducing the confusion and
“back-and-forth” between the various teams responsible for getting an application to
production. If the Meister build works when invoked by the developer from the IDE, the
developer knows that it will work for the other teams in the software lifecycle.

Meister Projects

An Meister project defines a set of build targets and the directory locations in which all
source files for all the project’s build targets can be found. Meister projects typically
correspond in a one-to-one relationship with the Project Workspaces.

9

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

The Meister Knowledge Base

Meister separates common build information from critical project specific information.
Common build information is managed in the Meister Knowledge Base, while
application specific information, that is likely to change over time, is managed in Target
Definition Files (e.g. target-dependency relationships).

The Meister Knowledgebase contains information on:

Build Types, Tasks and Rules

Build Types, Tasks and Rules contain all of the compiler rules and compile flags
necessary to create a target from a dependencies of a particular file type.

For Java, Build Types correspond to a final archive file type (.war, .jar, .ear).

Build Tasks correspond to an Ant Task used to execute the given step, such as:

• Ant Javac: used to compile .java → .class

• Ant Jar: used to jar the .class files and resources together

Project Dependency Directories

Source directories defined to a particular configuration of an application including all
source code, libraries and Meister target definition files.

Build Machines

A machine that is used to perform local or remote builds. Build Machine meta data
contains information on remote build machines that may be used to build different
components of a project.

Groups and Users

Objects that store information on the users and their corresponding groups used to
organize the availability and presentation of the Knowledge Base

Target Definition Files

Target Definition Files, identified by a .tgt file extension, are defined by developers and
indicate build targets and high-level dependency information for those targets. These
Target Definition Files are used to generate the Meister Build Control files. Unlike other
build methodologies, a target definition file does not require scripting of any kind by
developers. It is simply a target name, Build Type and high-level dependency list.

10

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

The Meister Eclipse plugin automatically creates the Target Definition Files for Eclipse
Java Projects. The plugin parses the Eclipse metadata and converts it to the Meister
TGT format. With these autogenerated TGT files, the build can be invoked internally
within the Eclipse IDE, but more importantly, externally on a remote machine, with little
developer interaction.

Using Meister with Eclipse Development

Meister provides full support of the use of Ant tasks when building Java-based
applications. When using Meister with Eclipse, Ant tasks are derived based on the
Eclipse project file. Developers work within the Eclipse IDE with Meister monitoring the
changes being made to the project dependency through the Meister Eclipse plugin. By
monitoring the developer’s work activities, Meister can maintain accurate Target
Definition files. These TGT files are then used outside of the Eclipse IDE to perform
project builds at any release level or state of a development lifecycle.

This section provides an overview of how to set up and execute builds using Meister
both within and outside the Eclipse IDE. The key integration point is the Meister Plugin,
which:

• directly gathers information on the contents of the Eclipse Java Projects;

• helps the developer set up a build using Meister.

Plugin Architecture

The Meister Eclipse plugin introduces a new type of Eclipse Project to the Workspace:
The Meister Build Project. This Build Project contains the Meister-specific components
of the build. The Build project has two subdirectories by default:

• build/ The location of the Meister build output.

• tgt/ The location where the Meister Target Definition files are stored

Build metadata is stored in the Meister Build Project. This metadata includes

• References to Eclipse Java projects to be built through this Build Project

• The Meister Project, Dependency Directory and Build Job (stored on the Meister
KB Server) corresponding to this Build Project.

• Options for generating TGT files within the Build Project

• Options passed to the bldmake and om programs when starting an Meister

Build.

These features are discussed in more detail in the following sections.

11

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

The plugin will monitor developer’s modifications to Eclipse Java projects, updating the
relevant Meister TGT file within the relevant Meister Build Project. When invoked, the
plugin will execute an Meister Build for the targets in the Build project.

Eclipse IDE Assumptions

The developer should already be familiar with Eclipse development processes. The
example below uses Java code for a Tetris game from Per Cederberg:
 http://www.percederberg.net/home/java/tetris/tetris.html

The code is available under the GPL.

An Eclipse Project called “JTetris” and imported the source code has been created for
this example. The source folder has been set on the build path to “JTetris/src”. After
creating the project, the filesystem looks as follows:

Figure 1

Meister Installation Assumptions

The Meister Knowledge Base Server is installed and running properly on a centralized
server to which the developer’s workstation has network access. The Meister Command
Line Client is installed on the developer’s local workstation.

For the JTetris project, we created an Meister Project on the Meister KB Server. This
Meister Project is called “JTETRIS” and has two Dependency Directories:
“DEVELOPMENT” and “INTEGRATION.”

http://www.percederberg.net/home/java/tetris/tetris.html

12

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

The Dependency Directories for the “DEVELOPMENT” Dependency Directory are
shown in Figure 3. The various environment variable settings will be discussed later.

Meister Knowledge Base Setup

In order to build an Eclipse Project using Meister, it must be associated with an Meister
Project. Go to the Manage Projects menu option from the main menu on the Meister
Web Client to associate the Project.

Meister Dependency Directories must be defined for each Meister Project. The
suggested Dependency Directory configurations are:

For the “development” Dependency Directory that will be used to build in the WSAD
Workspace:

.

$(TARGET_DEFINITION)

$(WORKSPACE_ROOT)

[Third-Party Library Directory]

[Java Home]/lib

[Java Home]/jre/lib

The environment variables $(TARGET_DEFINITION) and $(WORKSPACE_ROOT) are

dynamically set by the Meister Eclipse plugin when a build is executed in Eclipse. These
variables are set to location of the TGT files for the Meister Build Project (typically

<Workspace root>/<Meister Build Project>/tgt and <Workspace Root>,

respectively).

This searchpath can be used to do builds external to the Eclipse IDE by setting the
environment variables $(TARGET_DEFINITION) and $(WORKSPACE_ROOT).

Outside of Eclipse, an “integration” level build should refer to an SCM-managed set of
directories:

.

[SCM-Managed Directory of workspace files]

[SCM-Managed Directory of workspace files]/<Meister Build

Project>/tgt

[Third-Party Library Directory (SCM-Managed)]

[Java Home]/lib

[Java Home]/jre/lib

13

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

Installing the Meister Plugin for Websphere Developers

The Meister Plugin for Eclipse can be found in the WSAD directory on the Meister
installation CD. Execute install.exe to initiate the install process.

The installer will attempt to automatically detect which version of WSAD is installed (4.x
or 5.0) and the installation directory. For Eclipse, these directories obviously do not
exist. Instead, simply select the root level directory of the Eclipse installation as shown
in Figure 4.

Figure 4

After installation is complete, a new subdirectory will be created in the Eclipse plugins
directory:

[Eclipse]\plugins\com.openmake.eclipse_1.0.x

where x is the current revision number of the Meister Plugin.

To verify that the Meister Plugin is recognized, start up Eclipse and go to Help →
About…. The Plugin Details button will list all installed Plugins. The Meister Plugin will
have an entry:

Catalyst Systems Corporation Meister Plug-In 1.0.x

14

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

Using Meister Context Sensitive Menus

The Meister Eclipse plugin is now ready for use. All of the Meister actions are invoked
either through Context-Sensitive Menus. There are two broad categories of menus:
Project Properties and Meister Build Projects

Project Properties

All existing projects, when viewed from the Navigator View, will have an Meister Target
Definition option in their “Properties” section. This set of values determines how Eclipse
metadata will be converted to an Meister Target Definition file. The default is to use
values derived from the Eclipse metadata, although this can be customized from this
screen.

The options available on the “Target Definition Tab” are:

• Target Definition Filename: The name of the file that will store the Meister
metadata. This file will be saved in the Meister Build Project that is associated
with this WSAD project (see the next section).

• Target: The name of the final archive file to create (typically a .jar).

• Directory to build Target in: One can specify a sub-directory to in which to place
the final archive file (e.g. “bin” will create “bin/<file>.jar”).

• Directory to build intermediate targets in: This is the directory in which
intermediate compiled classes will be placed.

15

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

The defaults can be overridden by unchecking “Use derived values” as shown in Figure
5.

Figure 5

The “Wildcard Settings” Tab details how the dependencies are listed within the Meister
tgt file. Consider some code:

com/abc/package1/foo.java

com/abc/package1/bar.java

com/abc/package1/subpackage/sub-foo.java

The three wildcard options are (See Figure 6):

1. No Wildcards. Fully qualified:
Here, the dependencies are listed exactly as shown above.

2. Wildcards by extension per directory:
Here, there would be two dependencies

com/abc/package1/*.java

com/abc/package1/subpackage/*.java

3. Recurseive wildcard by extension:
Here there would be one dependency

com/**/*.java

16

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

Figure 6

There are two available checkboxes:

• “Apply dependency wildcard choice to source”: This option will apply the wildcard
option to the .java source files, as shown in the above example. Unchecking it
will apply the wildcarding option only to resource files such as .html, .jsp,

etc

• “Use Build Project settings”: This option will force the TGTs to use the wildcard
settings that are defined globally in the Meister Build Project (see below).

Creating an Meister Build Project

The Meister Plugin uses “Meister Build Projects” as a container to store the Meister
Target Definition files and the output of the Meister builds. In this manner, the Meister
builds are kept separate from the internal JDT class compiles. An Meister Build Project
must be configured and associated with Eclipse Java projects before an Meister build
can be invoked.

To create a new Meister Build Project within WSAD:

1. Select New → Project …

17

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

2. Select Openmake and Build Project. Click “Next”

3. Name the Build Project. Click “Next”

18

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

4. Select the Eclipse Java projects that will be built through this Meister Build
Project. Click “Next”.

5. Select the Meister Project and Dependency Directory (residing on the Meister KB
Server) under which this build will occur. Also give a “Build Job Name” to the
project.

19

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

At this point, one can “Finish” defining the Meister Build Project. “Next” will take you to

further customizations of:

a. Build Directories

b. bldmake and om flags

c. Pre and post commands

d. Project-wide TGT wildcard settings

e. Nature Mappings

These settings can be later customized by selecting the “Properties” of the
Meister Build Project.

At this point, the Meister Build Project will be created. By default, it will have two
directories, tgt/ and build/ as shown in Figure 7. The “tgt/” directory will contain

the Target Definition files for all Eclipse Java projects referenced by this Build Project. In
this example, we see the TGT file for “JTetris.jar”. The environment variable

$(TARGET_DEFINITION) gets set to this location when a build is invoked. The

“build/” directory will contain the output (.class and .jar) files from the Meister

build.

Figure 7

If the developer works on more than one Java application in the same workspace, the
developer just needs to configure multiple Meister Build Projects, one for each

20

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

application. Consider the following example, where the developer is working on the
“JTetris” application, and another game called “Space Game” in the same workspace.

Here, the developer would create a new Meister Build Project called
“SpaceGameBuild”, following the steps outlined above. However, this Build Project
would only be associated with the “SpaceGame” application Eclipse Java projects at
step 4 of creating a new Build Project:

Figure 8

The “SpaceGameBuild” project will now have the TGT file for “SpaceGame.jar”. The
JTetris build components are isolated in their respective build project.

21

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

Executing Meister Tasks Against an Meister Build Project

With the Meister Build Project defined, one uses the context-sensitive menu to invoke
Meister actions as shown in Figure 9.

Figure 9

The possible actions are:

1. Generate Meister TGTs: This action will recreate the Target Definition files. By
default, Target Definition files are updated:

a. The Project is configured through the Plugin: Project Properties page

b. Eclipse’s Java Build Path is adjusted

c. A file is added or removed from the Project

d. Before a Project Rebuild

2. Build with Meister: This will call bldmake and om to start the Meister Build

process. The build will occur in the “build/” directory of the Meister Build

Project. bldmake and om will be called with the options specified in the Build

Project. The typical set of options to om will cause om to run in the incremental
build mode.

3. Rebuild with Meister: This is the same as “Build with Meister”, except that the
“clean” option is passed to om. This will remove the target files from the build

area, and will invoke a full build.

22

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

The build options passed to bldmake and om are configured in the Meister Build Project

Properties as shown in Figure 10.

Figure 10

By default, the options passed are:

• bldmake:

o Case Sensitive: -s

• om:

o Verbose output: -ov

o Tells OM not to scan the Java source: -j

The equivalent command line call to bldmake or om is shown below the options.

When an Meister Build is executed, an external process is called that executes the
Meister build commands. This build is independent of the Eclipse IDE (although it is
being invoked from within the IDE). The output of the build is shown in the “Meister
Console” window (see figure 11).

23

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

Figure 11

The fact that the build occurs external to the IDE is the key for the Meister build
process. This insures that the build that the developers are doing will be repeatable on a
machine that does not have the Eclipse IDE. The use of the Meister TGT files will allow
a seamless transition between the Development teams and other teams responsible for
other parts of the lifecycle. This greatly reduces the amount of “back and forth” and
confusion between multiple teams involved in taking an enterprise application to
production.

Meister Plugin Preferences

Developers can set global preferences for the Meister Plugin. These preferences will be
used when creating new Meister Build Projects. (See Figures 12 and 13)

24

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

Figure 12

The preferences allow the developer to set the defaults as follows:

Figure 13

25

Copyright © 2021 Catalyst Systems Corporation. OpenMake, Meister and their logos are registered trademarks of Catalyst Systems Corporation.

All other product names may be trademarks of their respective companies.

Conclusion

This document has demonstrate both the usefulness of the the Meister Build
methodology, as well as the configuration of the Meister Eclipse plugin within the
Eclipse IDE. It has outlined the benefits of using Meister to build Eclipse based
development projects with a focus on Websphere Studio Application Development.

Company Overview

OpenMake Software started the evolution of builds in 1995, serving mainly the financial
community with the mission of delivering a 100% insulated build process that were also
fast. The OpenMake Software team understood the ins and outs of software compiles
and links, and how easily a build could be the bottleneck of the software delivery
process and be easily compromised on accident or on purpose. With this mission in
mind, OpenMake Meister was created and has been serving large enterprises for over
25 years, the longest serving solution in the DevOps ecosystem. Meister has been sold
and distributed by Broadcom for over 20 years.

